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Neutrons have been studied extensively for detection of
nuclear materials because they have developed sources;
penetrate deeply; and produce strong signatures that
penetrate to distant sensors that have undergone extensive
development. DOD studies of inspection by beams and sensors
at several kilometers led to large beams, detectors, and doses
so they were discarded.

Sources and detectors can be automated and moved close
to the object interrogated, but thermal systems can be negated
by absorbers and moderators. Boron and Cd absorbers reduce
thermal flux 10-fold, and a few cm of Carbon reduces neutron
energies to thermal where absorbers are most efficient.
Together they could reduce the nuclear signal from thermal
neutrons to insignificant levels (Fig. 1).

A fast spectrum avoids absorption by remaining above
this threshold. The Fermi Age theory used to design fast
reactors can keep track of both the source neutrons and those
from fissile material, which represent the noise and signal,
respectively (App 1). The source energy can be chosen to fit a
cargo container or other object of interest. (Fig. 2) The noise
and signal neutron currents are widely separated at any time
(Fig. 3), so the fraction of noise that scatters into the signal is
small (App. 2). The advantage that gives the signal in energy
more than offsets its disadvantage in current. That produces
high confidence identification of SNM that is insensitive to
absorbers (Fig. 4).

Moderators increase the target surface area and neutron
source. 10-20 cm Carbon would reduce neutron energy to
roughly the absorber threshold. Thicker moderators could



eliminate nuclear signals altogether. However, scattering
neutrons from them imprints distinctive energy bands whose
spacing carries information on moderator type and number
indicates moderator thickness as an indication of intentional
concealment.

In summary, compact fast neutron inspection provides
high-confidence detection of disseminated nuclear designs,
materials, and technologies on the time scale on which they
could be integrated to take advantage of the large number of
containers entering the U.S. ports. They could be deployed on
ships, ports, or at sea to support first line defense of the US
against nuclear weapons in a manner consistent with the role
of the Coast Guard.
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Fig. 1. Scattering & capture lengths
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Fig. 2 Source neutrons
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Fig. 2b. Signal neutrons
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Fig. 3. Slowing time
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